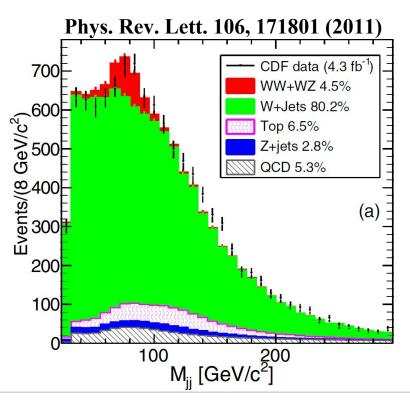
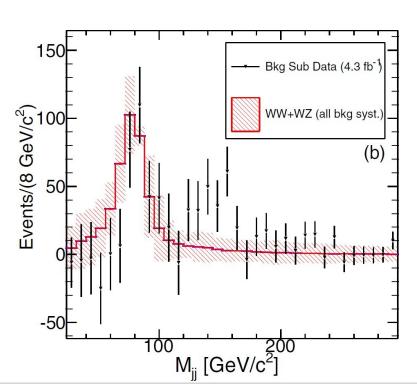


Study of Dijet Invariant Mass Distribution in lyjj Final States

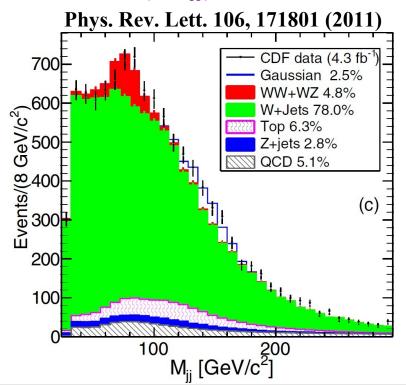
Joseph Haley – Northeastern U. On behalf of the D0 Collaboration

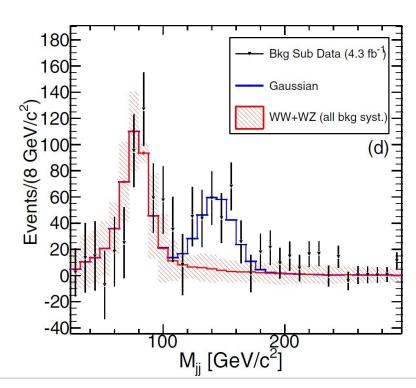

June 10, 2011


Fermilab Wine & Cheese Seminar

Why is everyone here?

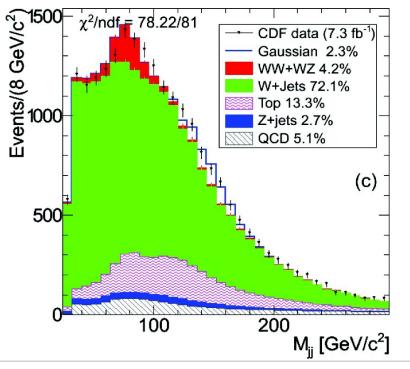
- CDF has reported seeing an excess of events in the dijet mass spectrum above the expected Standard Model contributions
- Everyone wants to know, can DØ confirm this?

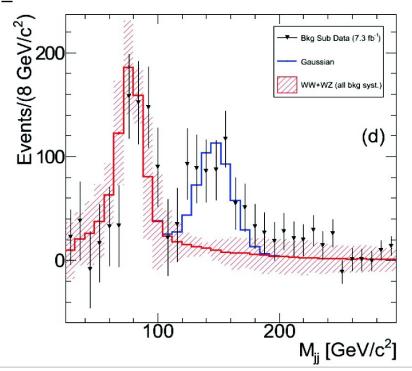




The CDF Excess

- Using 4.3 fb⁻¹ integrated luminosity the CDF data show an excess of 3.2 standard deviations around a dijet mass ~145 GeV
 - Modeled by a Gaussian with width expected from jet resolution
 - If this is a resonance from some new particle, X, then $\sigma(p\overline{p} \rightarrow WX) \approx 4 \text{ pb}$
 - ► Assumes BR(X \rightarrow jj) = 1.0 and the same efficiency as WH \rightarrow lvbb with m_H=150 GeV





The CDF Excess

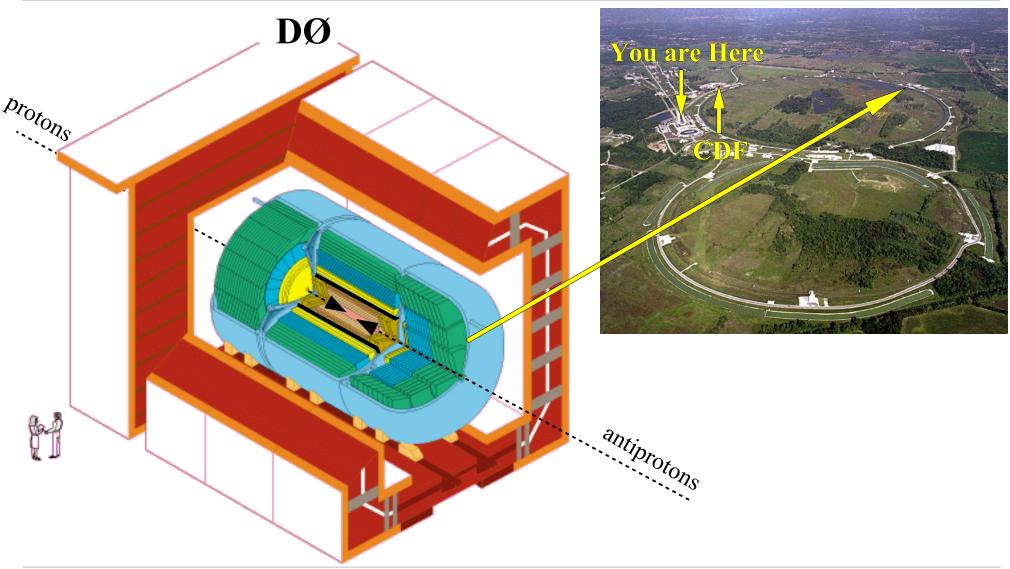
- CDF has updated results using an integrated luminosity of 7.3 fb⁻¹
 - Significance of excess now exceeds 4σ

www-cdf.fnal.gov/physics/ewk/2011/wjj/7 3.html

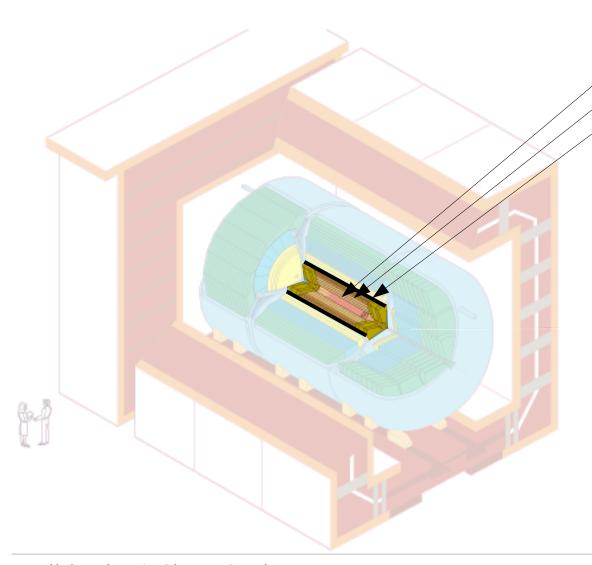


Analysis Outline

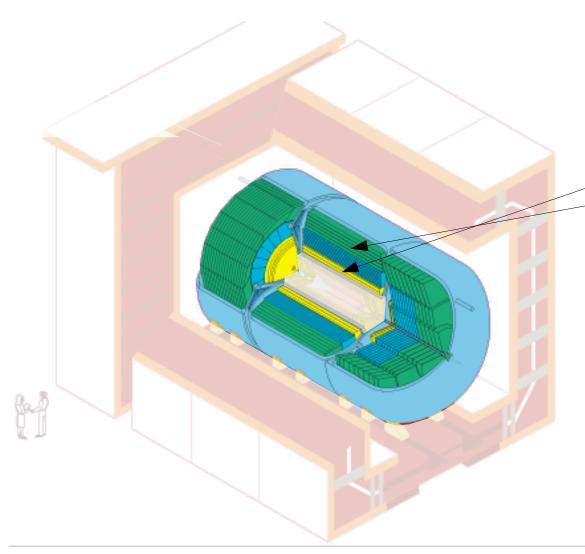
- Try to mirror what was done in the CDF analysis
 - Started from ongoing DØ diboson analysis and modified the kinematic selection to replicate the CDF publication
 - Make similar assumptions on modeling an excess
- Study the dijet mass distribution in the DØ data
 - Fit SM contributions to the data
 - ► Do we have an excess of events around $M_{ii} = 145 \text{ GeV}$?
 - Include a model for WX→lvjj
 - How large of an excess do the DØ data support?



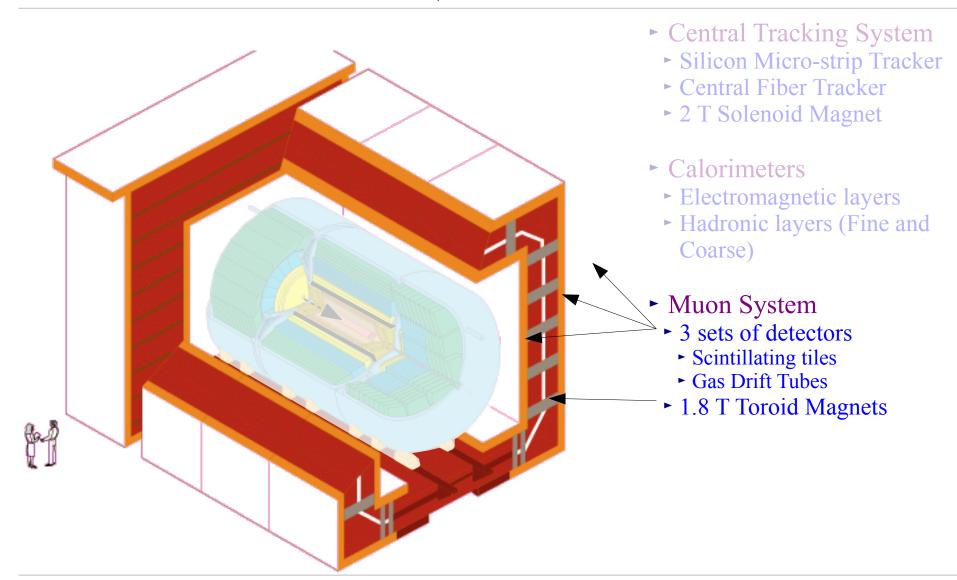
$\mathcal{D} \emptyset$ Collaboration



$\mathcal{D}\mathcal{O}$ Detector


$\mathcal{D}\mathcal{O}$ Detector

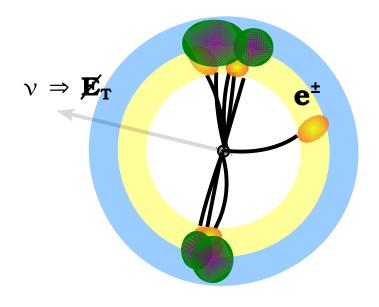
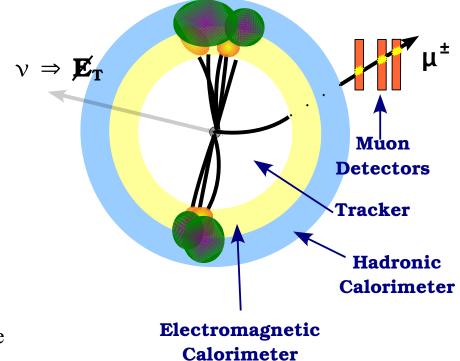
- ► Central Tracking System
 - ► Silicon Micro-strip Tracker
 - ► Central Fiber Tracker
 - ► 2 T Solenoid Magnet

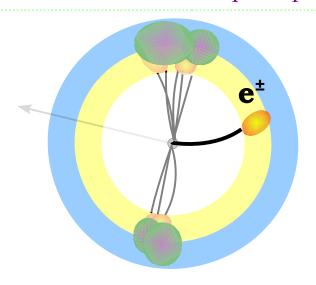

DØ Detector

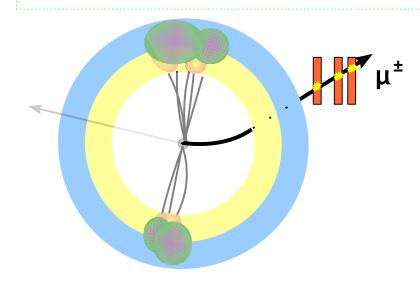
- Central Tracking System
 - ► Silicon Micro-strip Tracker
 - ► Central Fiber Tracker
 - ► 2 T Solenoid Magnet
- Calorimeters
 - ► Electromagnetic layers
 - Hadronic layers (Fine and Coarse)

DØ Detector

- 4.3 fb⁻¹ of integrated luminosity collected by the DØ detector
 - Want events containing $W(\rightarrow lv)$ and 2 jets

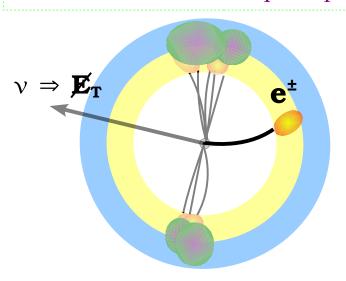

Illustration with beam perpendicular to page

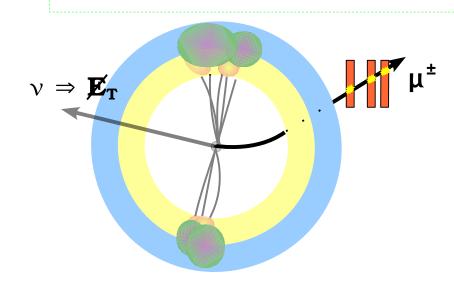

• W→lv Selection:

- Electron:
 - $p_T \ge 20 \text{ GeV}$, $|\eta| < 1.0$
 - ► Isolated track and EM shower
 - Electron shower shape requirements

OR

- Muon:
- ► $p_T \ge 20 \text{ GeV}$, $|\eta| < 1.0$
- ► Hits in all three muons layers
- Isolated in tracker and calorimeter

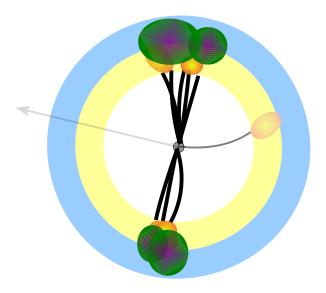



• W→lv Selection:

- Electron:
 - $p_T \ge 20 \text{ GeV}$, $|\eta| < 1.0$
 - ► Isolated track and EM shower
 - Electron shower shape requirements

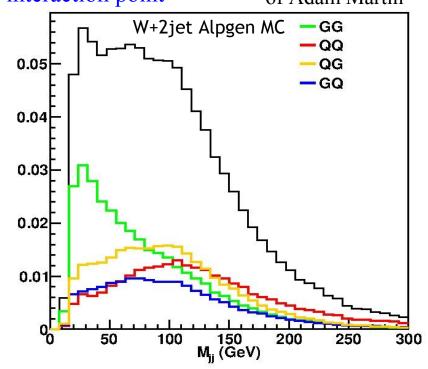
OR

- Muon:
- ► $p_T \ge 20 \text{ GeV}$, $|\eta| < 1.0$
- ► Hits in all three muons layers
- ► Isolated in tracker and calorimeter



- Neutrino: $\mathbb{E}_{T} > 25 \text{ GeV}$
- Lepton+Neutrino system: $30 \text{ GeV} < m_T(W) < 200 \text{ GeV}$
- Veto events with more than one charged lepton

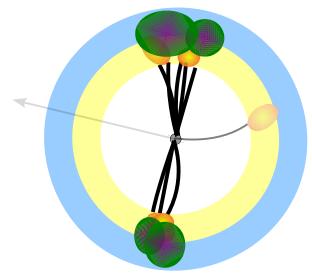
- Jets:
 - Reconstruction:
 - ► DØ iterative mid-point cone algorithm with radius R=0.5
 - ► Must be a hadronic shower and not contain noisy calorimeter cells
 - ► At least two tracks originating from the primary interaction point



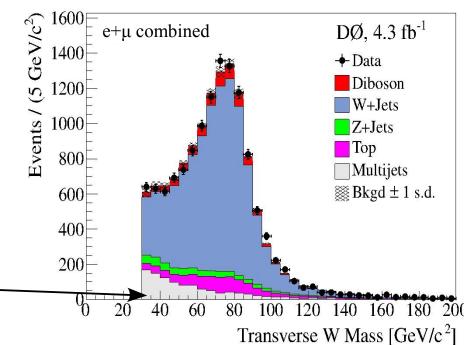
• Jets:

- Reconstruction:
 - ► DØ iterative mid-point cone algorithm with radius R=0.5
 - ► Must be a hadronic shower and not contain noisy calorimeter cells
 - ► At least two tracks originating from the primary interaction point

Plot courtesy of Adam Martin

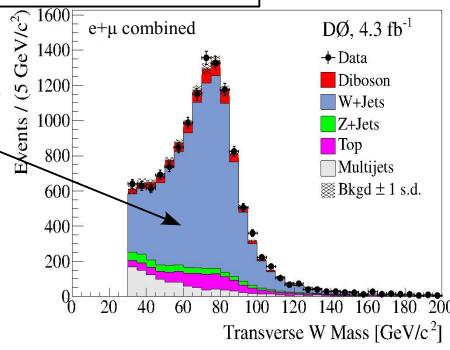

- Jet Energy Scale
 - Measured in γ +jet and dijet events
 - Correct energy to particle-level
 - ► Correct for detector response, out of cone showering, overlap with pileup energy
- Relative Data/MC Correction
 - Measured in Z+jet events
 - Different correction depending on quark vs. gluon content

• Dijet Selection:


- Two Jets:
 - ► $p_T(jet1) \ge 30 \text{ GeV}$, $|\eta_{detector}| \le 2.5$
 - ► $p_T(jet2) \ge 30$ GeV, $|\eta_{detector}| \le 2.5$
 - Veto events with additional jets meeting these criteria
- Dijet System
 - ► $p_T(jj) \ge 40 \text{ GeV}$
 - ► $|\Delta\eta(\text{jet1,jet2})| \leq 2.5^*$
- Reduce mis-measured **E**_T
 - ► $|\Delta \varphi(\text{jet1}, \cancel{E}_T)| \ge 0.4$

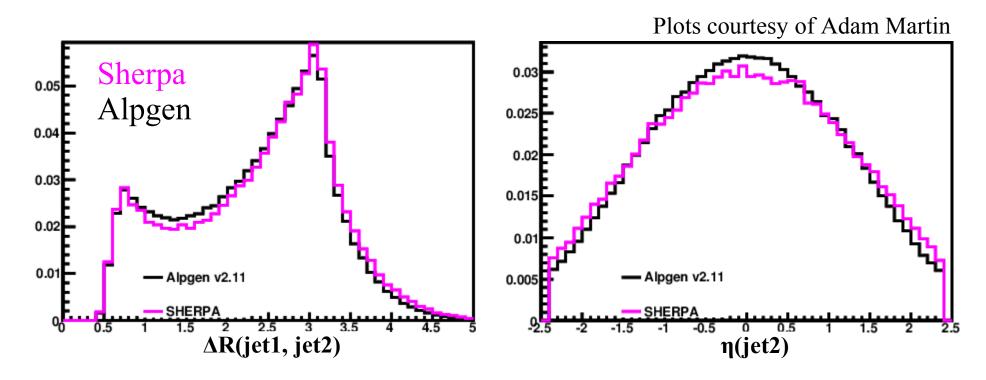
SM Predictions

- Processes with a high p_T lepton modeled via Monte Carlo generators
 - ► Pythia: WW, WZ, ZZ
 - ► CompHep+Pythia: single top
 - ► Alpgen+Pythia: W+jets, Z+jets, tt
 - With Geant-based detector simulation
- Multijet background
 - A jet is mis-identified as a lepton
 - Estimated from multijet enriched data
 - ► Muon channel: Reverse isolation cuts
 - ► Electron channel: Release EM quality criteria
 - Corrected for contributions already accounted for by MC
 - ► Normalization determined by fitting the m_T(W) distribution

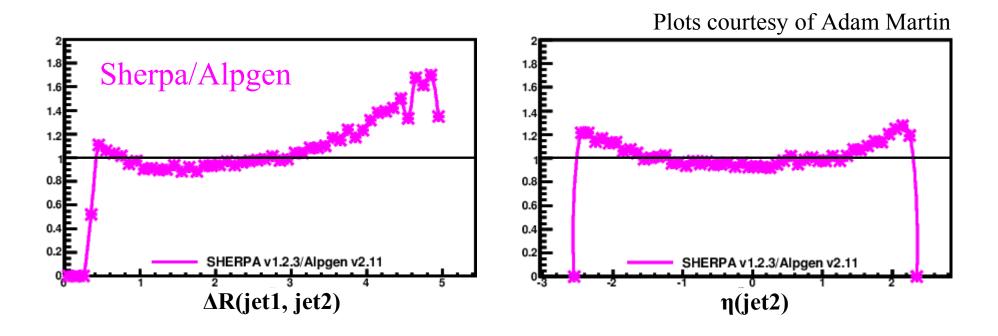


SM Predictions

	Electron channel	Muon channel
Dibosons	434 ± 38	304 ± 25
$W\!+\!{ m jets}$	5620 ± 500	3850 ± 290
$Z\!+\!{ m jets}$	180 ± 42	350 ± 60
$tar{t} + ext{single top}$	600 ± 69	363 ± 39
${ m Multijet}$	932 ± 230	151 ± 69
Total predicted	7770 ± 170	5020 ± 130
Data	7763	5026

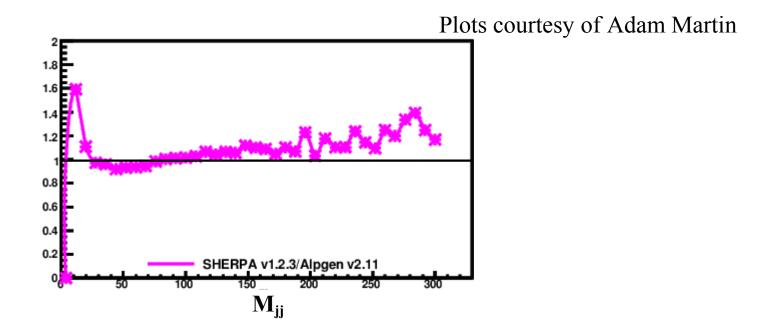

- Dominated by W+jets (~75%)
 - Vital to understand this background when looking differences of a few percent
 - MC generators are meant to reproduce the SM, but are only approximations
 - Make assumptions and simplifications
 - ► Many "knobs" to tune
 - Different generators give different results

Joseph Haley



- We know that Alpgen is not the final answer in modeling W+jets
 - Different generators have different predictions

- We know that Alpgen is not the final answer in modeling W+jets
 - Different generators have different predictions

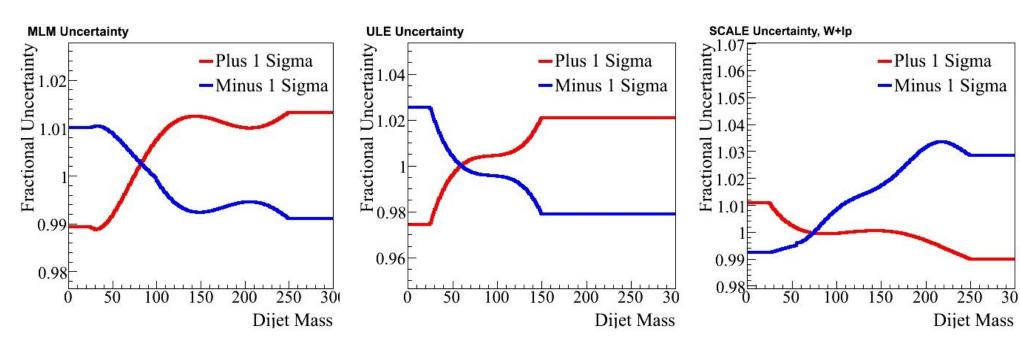


• In analyses with looser cuts (e.g., WH \rightarrow lvbb) we see clear discrepancies of exactly this type

20

- We know that Alpgen is not the final answer in modeling W+jets
 - Different generators have different predictions

• In analyses with looser cuts (e.g., WH \rightarrow lvbb) we see clear discrepancies of exactly this type



- In other analyses we use data-driven corrections to fix the modeling of these variables with known discrepancies between predictions
 - ► Jet η , $\Delta R(\text{jet1, jet2})$, and $p_T(W)$
 - However, the relatively tight selection used in this analysis reduces the necessity for this correction
 - Removes much of the problematic phase space (low $p_T(W)$)
- The CDF analysis did not apply corrections to the Alpgen modeling
 - ⇒ To parallel their analysis, we perform the analysis without these corrections
 - ► Still including uncertainties on the modeling of these variables
- However, to show that these corrections would not alter the conclusion
 - ⇒ We also present results with these corrections

- Large NLO/LO k-factor
- Uncertainties due to:
 - ► P_T threshold for Alpgen MLM matching prescription
 - ► Parton shower model (Pythia vs. Herwig) and underlying event model (tunes)
 - ► Renormalization/Factorization scale choice

Systematic Uncertainties

Source of systematic uncertainty	Diboson signal	$W{ m +jets}$	$Z{ m +jets}$	Тор	Multijet	Nature
Trigger/Lepton ID efficiency	± 5	± 5	± 5	± 5		N
Trigger correction, muon channel	± 5	± 5	± 5	± 5		D
Jet identification	± 1	± 1	± 2	± 1		D
Jet energy scale	± 10	± 5	± 7	± 5		D
Jet energy resolution	± 6	± 1	± 3	± 6		D
Jet vertex confirmation	± 3	± 3	± 4	± 1		D
Luminosity	± 6.1	± 6.1	± 6.1	± 6.1		N
Cross section		± 6.3	± 6.3	± 10		N
V+hf cross section		± 20	± 20			N
V+2 jets/ $V+3$ jets cross section		± 10	± 10			N
Multijet normalization					± 20	N
Multijet shape, electron channel					± 1	D
Multijet shape, muon channel					± 10	D
Diboson modeling	± 8					D
Parton distribution function	±1	± 5	± 4	± 3		D
Unclustered Energy correction	$\pm < 1$	± 3	± 3	$\pm < 1$		D
ALPGEN η and $\Delta R(jet1, jet2)$ corrections		$\pm < 1$	$\pm < 1$			D
ALPGEN W p_T correction		$\pm < 1$				D
ALPGEN correction Diboson bias	± 1	± 1	± 1	± 1		D
Renormalization and factorization scales		± 1	± 1			D
ALPGEN parton-jet matching parameters		± 1	± 1			D
Parton shower and Underlying Event		± 2	± 2			D

Systematic Uncertainties

Source of systematic uncertainty	Diboson signal	$W{ m + jets}$	$Z{ m +jets}$	Top	Multijet	Nature
Trigger/Lepton ID efficiency	± 5	± 5	± 5	± 5		N
Trigger correction, muon channel	± 5	± 5	± 5	± 5		D
Jet identification	± 1	± 1	± 2	± 1		D
Jet energy scale	± 10	± 5	± 7	± 5		D
Jet energy resolution	± 6	± 1	± 3	± 6		D
Jet vertex confirmation	± 3	± 3	± 4	± 1		D
Luminosity	± 6.1	± 6.1	± 6.1	± 6.1		N
Cross section		± 6.3	± 6.3	± 10		\mathbf{N}
V+hf cross section		± 20	± 20			N
V+2 jets/V+3 jets cross section		± 10	± 10			N
Multijet normalization					± 20	N
Multijet shape, electron channel					± 1	D
Multijet shape, muon channel					± 10	D
Diboson modeling	±8					D
Parton distribution function	± 1	± 5	± 4	± 3		D
Unclustered Energy correction	\pm <1	± 3	± 3	$\pm < 1$		D
ALPGEN η and $\Delta R(jet1, jet2)$ corrections		$\pm < 1$	$\pm < 1$			D
ALPGEN W p_T correction		$\pm < 1$				D
Alpgen correction Diboson bias	± 1	± 1	± 1	± 1		D
Renormalization and factorization scales		± 1	± 1			D
ALPGEN parton-jet matching parameters		± 1	± 1			D
Parton shower and Underlying Event		± 2	± 2			D

- Fit dijet mass distributions for all SM processes to the data
 - Construct a χ^2 function from the ratio of Poisson likelihoods and include prior information on the systematic uncertainties

$$\chi^{2}(\theta, S, B; D) = 2\sum_{i=0}^{N_{bins}} (B_{i} + S_{i} - D_{i}) - D_{i} \ln \left(\frac{B_{i} + S_{i}}{D_{i}}\right) + \sum_{k=0}^{N_{syst}} \theta_{k}^{2}$$

D = observed number of events

 $S(\theta_k)$ = predicted number of signal events

 $B(\theta_k)$ = predicted number of background events

 θ_k = number of standard deviations systematic k has been pulled away from nominal

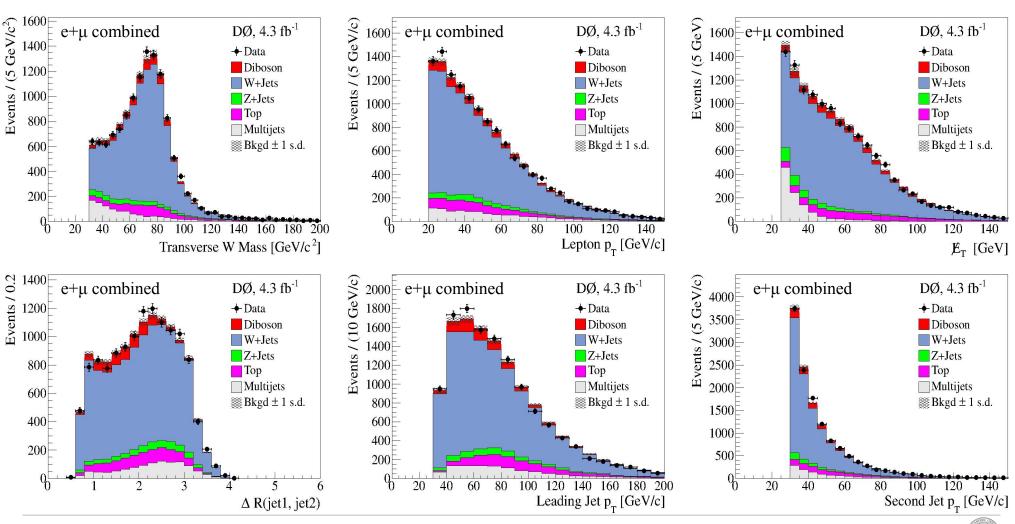
- Fit dijet mass distributions for all SM processes to the data
 - Construct a χ^2 function from the ratio of Poisson likelihoods and include prior information on the systematic uncertainties

$$\chi^{2}(\theta, S, B; D) = 2\sum_{i=0}^{N_{bins}} (B_{i} + S_{i} - D_{i}) - D_{i} \ln \left(\frac{B_{i} + S_{i}}{D_{i}}\right) + \sum_{k=0}^{N_{syst}} \theta_{k}^{2}$$

D = observed number of events

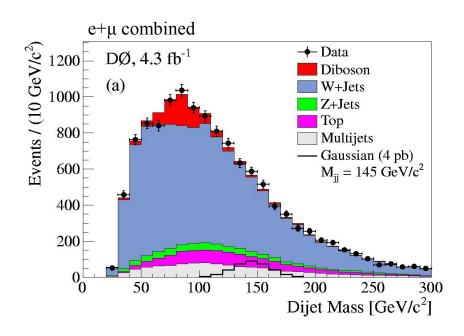
 $S(\theta_k)$ = predicted number of signal events

 $B(\theta_k)$ = predicted number of background events

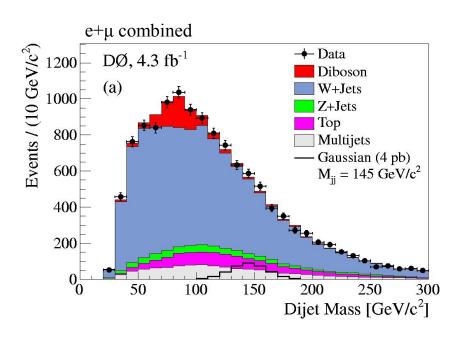

 θ_k = number of standard deviations systematic k has been pulled away from nominal

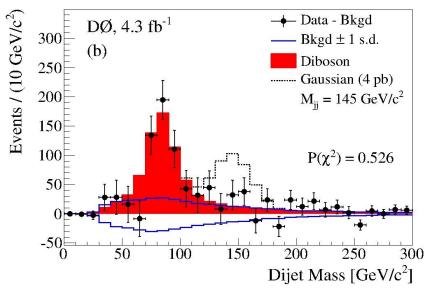
- ► Templates can vary within systematic uncertainties, constrained by Gaussian priors
- Can "float" a parameter by removing the θ^2 prior constraint
 - ► Float cross sections for Diboson and W+jets contributions

• Kinematic distributions after the fit in the dijet mass

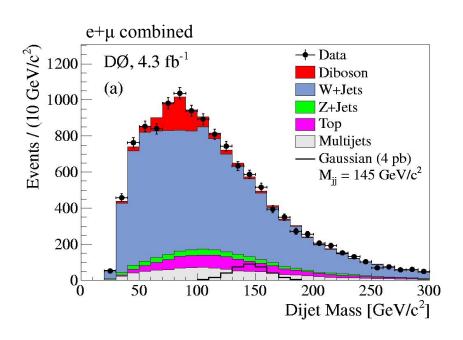


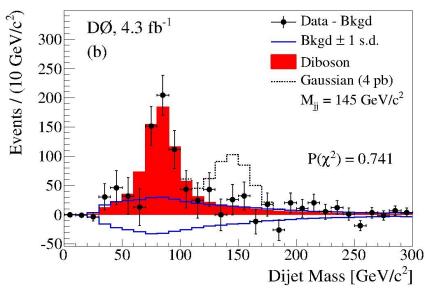
• The dijet mass distributions after fitting the SM processes to the data

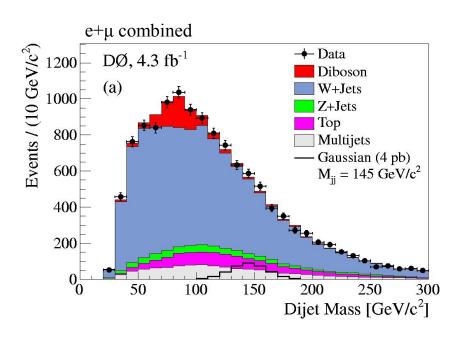

- The dijet mass distributions after fitting the SM processes to the data
 - Without Alpgen modeling corrections applied

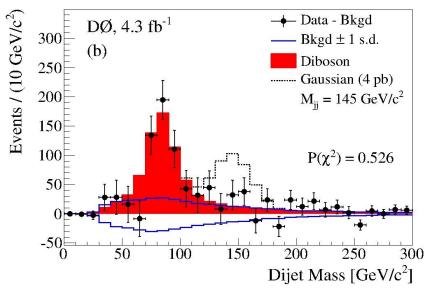


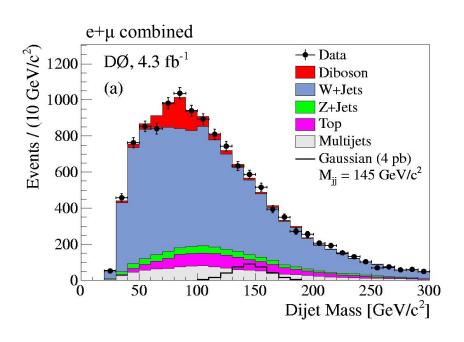
Joseph Haley

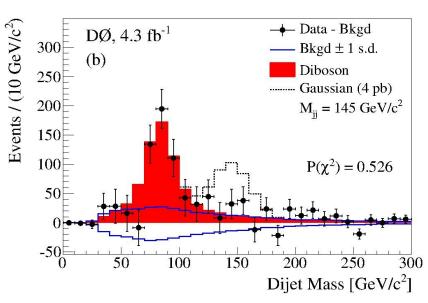

- The dijet mass distributions after fitting the SM processes to the data
 - Without Alpgen modeling corrections applied



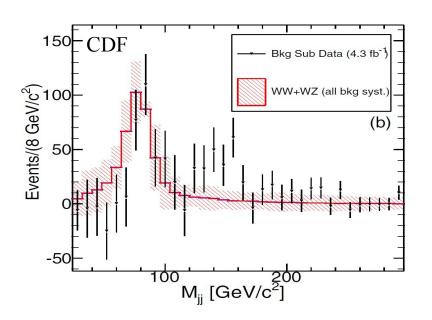

- The dijet mass distributions after fitting the SM processes to the data
 - With Alpgen modeling corrections applied

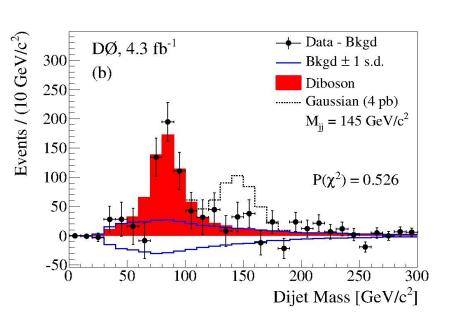



- The dijet mass distributions after fitting the SM processes to the data
 - Without Alpgen modeling corrections applied

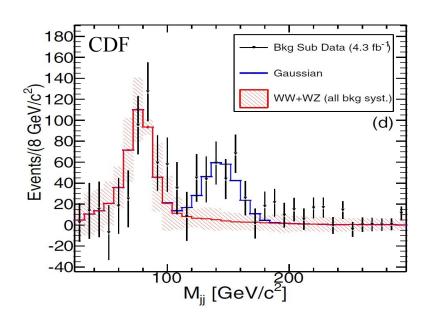


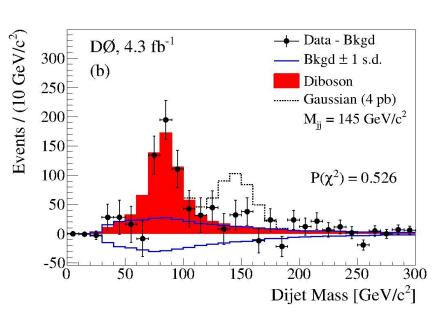
- The dijet mass distributions after fitting the SM processes to the data
 - Without Alpgen modeling corrections applied



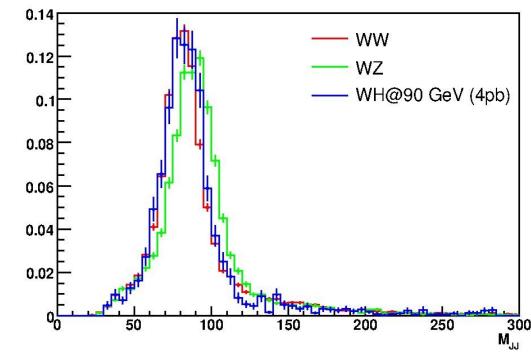

• The DØ data are consistent with the SM prediction

- The dijet mass distributions after fitting the SM processes to the data
 - Without Alpgen modeling corrections applied

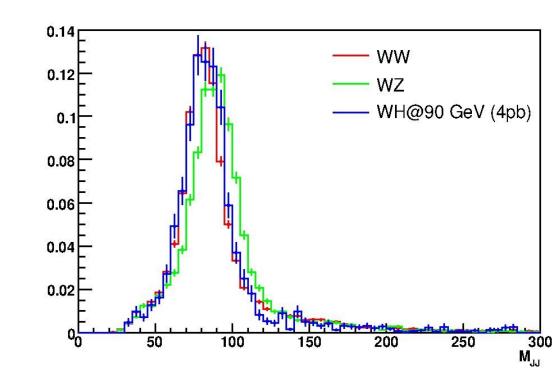



• The DØ data are consistent with the SM prediction

- The dijet mass distributions after fitting the SM processes to the data
 - Without Alpgen modeling corrections applied


- The DØ data are consistent with the SM prediction
- What if we fit to a resonance like the excess seen by CDF?
 - Quantify whether the DØ data are consistent with such an excess

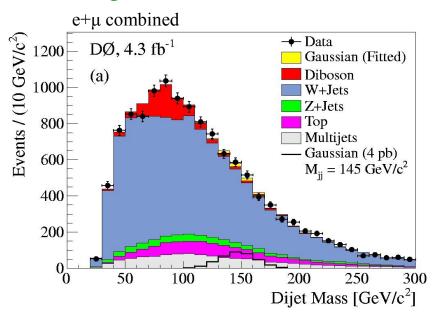
Modeling $WX \rightarrow lvjj$

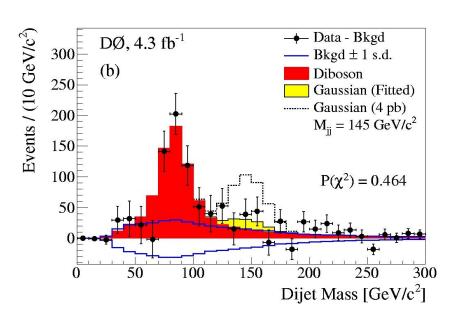

- Assume a Gaussian distribution in dijet mass with a width determined by the DØ experimental resolution
 - ► A simplified mode, but a reasonable approximation for a narrow resonance
 - ► Apples-to-apples comparison to CDF's claim of the excess being consistent with a cross section of $\approx 4 \text{ pb}$
 - Width estimated from WW→lvjj
 - $\bullet \ \sigma_{jj} = \ \sigma_{W \to jj} \times \sqrt{M_{jj} / M_{W \to jj}}$
 - ► For $M_{ii} = 145 \text{ GeV} \Rightarrow \sigma_{ii} = 15.7 \text{ GeV}$

Modeling $WX \rightarrow lvjj$

- Estimate efficiency from WH→Wbb
 - Assume BR($X \rightarrow jj$) = 1.0
 - ► Use efficiency from m_H=150 GeV for the Gaussian template with mean of 145 GeV
 - ► To be consistent with CDF
 - Assign systematic uncertainties
 - ► Jet energy scale uncertainty changes mean by ±1.5 %
 - ► Jet Resolution uncertainty changes normalization by ±5% and width by ±3%

Fitting WX


• Fit WX—lvjj template to the data along with SM processes



Fitting WX

- Fit WX→lvjj template to the data along with SM processes
 - Floating normalizations of WX, diboson, and W+jets

- Fitted signal is also consistent with no excess
 - How large of an excess is allowed by the DØ data?

Limit Setting

- Frequentist approach
 - If the experiment is repeated many times, what fraction would find a more extreme result?
 - Need to simulate repeating the experiment many times
 - ► Generate ensembles of pseudo-experiments allowing statistical and systematic fluctuations
 - ► Two hypotheses: Background only and Signal+Background

Limit Setting

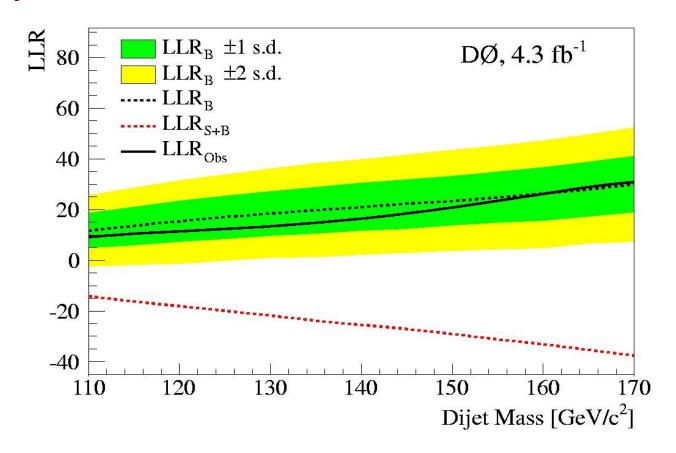
- Frequentist approach
 - If the experiment is repeated many times, what fraction would find a more extreme result?
 - Need to simulate repeating the experiment many times
 - ► Generate ensembles of pseudo-experiments allowing statistical and systematic fluctuations
 - ► Two hypotheses: Background only and Signal+Background
 - Test statistic: Ratio between S+B fit and B-only fit

$$LLR = -2\log\left(\frac{P(D; S+B)}{P(D; B)}\right) = \chi^2(D|S+B) - \chi^2(D|B)$$

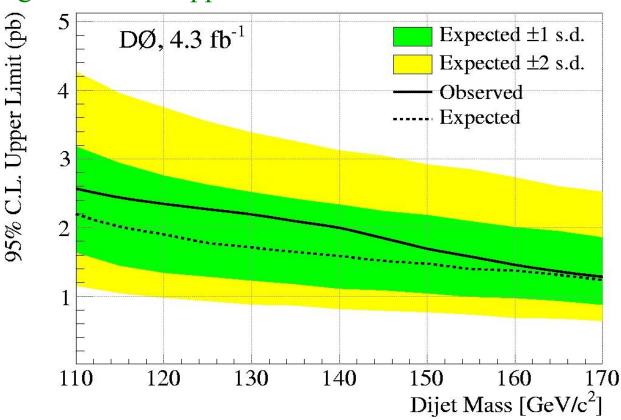
D = observed number of events

S = predicted number of signal events

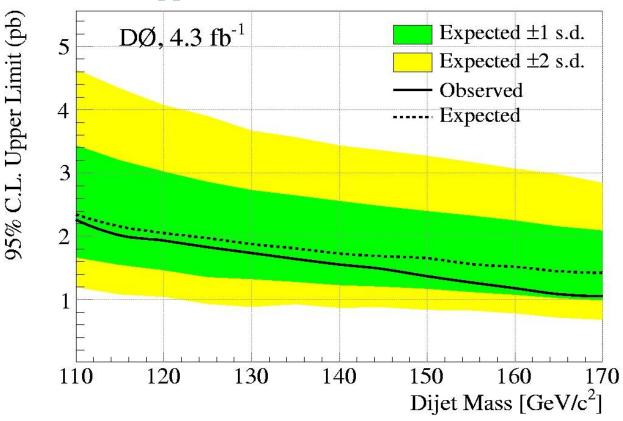
B = predicted number of background events


 Construct the LLR probability distribution for each hypothesis and see how they compare to the observed LLR

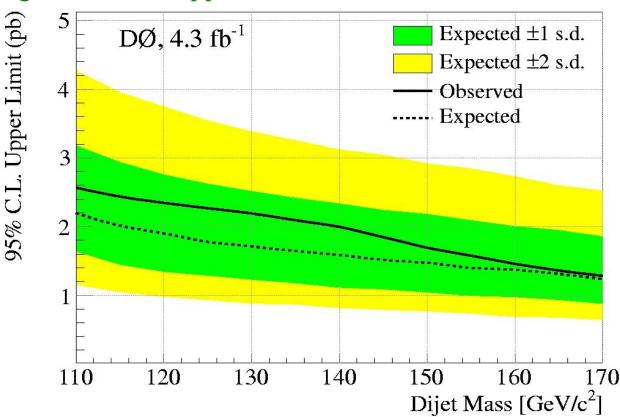
Limit Setting


• Compare observed LLR to the predicted LLR distributions over the range of dijet mass

- 95% CL upper limits on WX→lvjj as a function of reconstructed M_{jj}
 - Without Alpgen modeling corrections applied

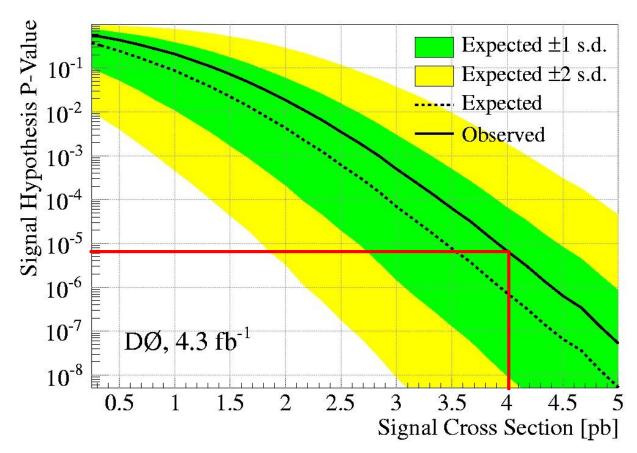

- For Mjj = 145 GeV
 - ► 95% CL exclusion for cross sections greater than 1.9 pb

- 95% CL upper limits on WX→lvjj as a function of reconstructed M_{jj}
 - With Alpgen modeling corrections applied


- For Mjj = 145 GeV
 - ► 95% CL exclusion for cross sections greater than 1.5 pb

- 95% CL upper limits on WX→lvjj as a function of reconstructed M_{jj}
 - Without Alpgen modeling corrections applied

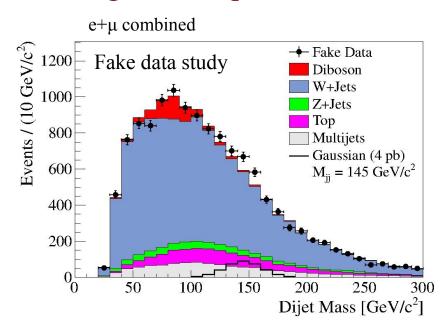
- For Mjj = 145 GeV
 - ► 95% CL exclusion for cross sections greater than 1.9 pb



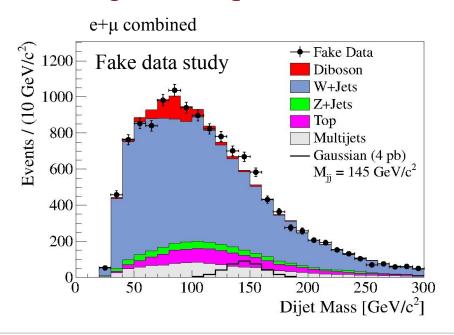
• Can also ask: How strongly is an excess at 145 GeV ruled out?

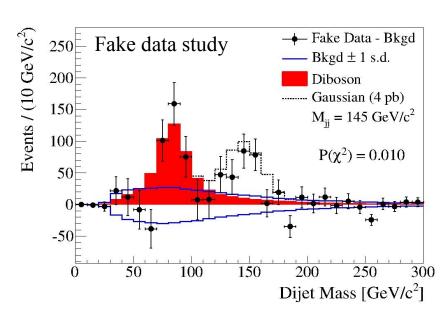
• How strongly do the DØ data rule out an excess at 145 GeV?

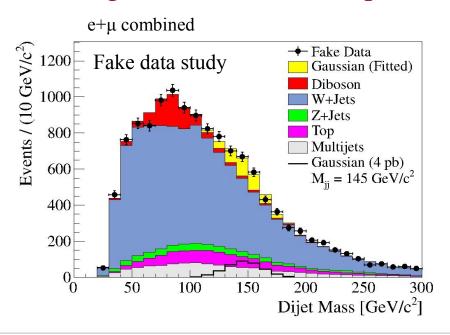
- For a cross section of 4 pb as reported by CDF
 - ► Exclude at 99.999% CL
 - ► 4 standard deviations

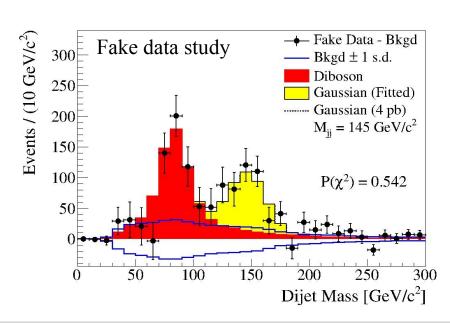


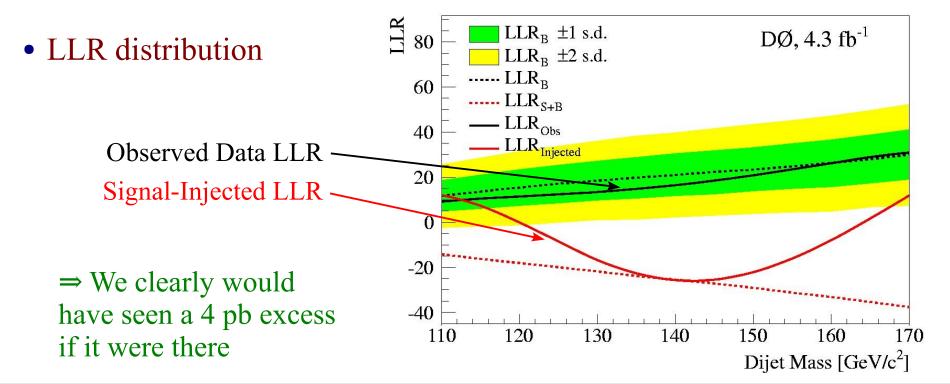
⇒ The DØ data are not consistent with the excess seen by CDF


- What if there really were a 4 pb dijet mass resonance at 145 GeV?
 - ► What would it look like?
 - Make a signal-injected mock "data" sample
 - ► Composed of data + WX template @ 145 GeV
 - Confirm that our studies would find that signal
- Fitting the SM processes to the signal-injected data:




- What if there really were a 4 pb dijet mass resonance at 145 GeV?
 - ► What would it look like?
 - Make a signal-injected mock "data" sample
 - ► Composed of data + WX template @ 145 GeV
 - Confirm that our studies would find that signal
- Fitting the SM processes to the signal-injected data:




- What if there really were a 4 pb dijet mass resonance at 145 GeV?
 - What would it look like?
 - Make a signal-injected mock "data" sample
 - ► Composed of data + WX template @ 145 GeV
 - Confirm that our studies would find that signal
- Fitting the SM + WX template to the signal-injected data:

- What if there really were a 4 pb dijet mass resonance at 145 GeV?
 - ► What would it look like?
 - Make a signal-injected mock "data" sample
 - ► Composed of data + WX template @ 145 GeV
 - Confirm that our studies would find that signal

Differences Between CDF and DØ

- Detector and Object Reconstruction
 - Different jet cone algorithms
 - Different Jet Energy Scale corrections?
- Monte Carlo generators

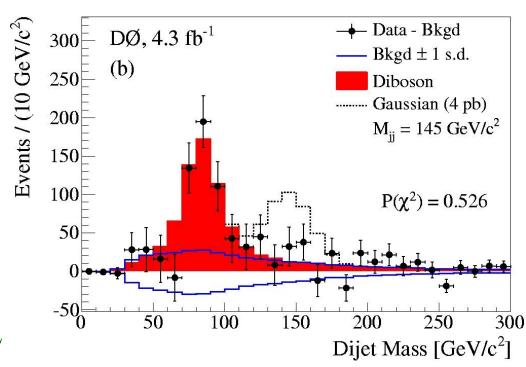
CDF: DØ:

PDF set: CTEQ5L CTEQ6L1

Pythia version: v6.326 v6.409

Pythia tune: tune A "DØ tune A" (like tune A, but for CTEQ6L1)

Alpgen version: v2.1 v2.11_wcfix


- Alpgen parameters and uncertainties
 - DØ assigns uncertainties on kinematic modeling, parton-jet matching, parton shower model, renormalization/factorization scale, PDF

Summary

- Used the same selection as the CDF analysis
- Studied the dijet mass spectrum in the range 110 170 GeV
 - ⇒ DØ data are consistent with the SM predictions
 - We verified that:
 - We would see a 4 pb excess if it were in the DØ data
 - We get consistent results with or without kinematic Alpgen corrections
 - For a resonance at 145 GeV
 - \Rightarrow Exclude 1.9 pb at 95% CL
 - ⇒ Exclude 4 pb at 99.999% CL

Submitted to Phys. Rev. Lett. June 9, 2011; Fermilab-PUB-11/267-E

Thank you

54